Limit distributions for different forms of four-state quantum walks on a two-dimensional lattice
نویسندگان
چکیده
Long-time limit distributions are key quantities for understanding the asymptotic dynamics of quantum walks, and they are known for most forms of one-dimensional quantum walks using two-state coin systems. For two-dimensional quantum walks using a four-state coin system, however, the only known limit distribution is for a walk using a parameterized Grover coin operation and analytical complexities have been a major obstacle for obtaining long-time limit distributions for other coins. In this work however, we present two new types of long-time limit distributions for walks using different forms of coin-flip operations in a four-state coin system. This opens the road towards understanding the dynamics and asymptotic behaviour for higher state coin system from a mathematical view point.
منابع مشابه
Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملUsing the Lattice Boltzmann Method for the numerical study of non-fourier conduction with variable thermal conductivity
The lattice Boltzmann method (LBM) was used to analyze two-dimensional (2D) non-Fourier heat conduction with temperature-dependent thermal conductivity. To this end, the evolution of wave-like temperature distributions in a 2D plate was obtained. The temperature distributions along certain parts of the plate, which was subjected to heat generation and constant thermal conductivity condit...
متن کاملQuantum Walks
Quantum walks can be considered as a generalized version of the classical random walk. There are two classes of quantum walks, that is, the discrete-time (or coined) and the continuous-time quantum walks. This manuscript treats the discrete case in Part I and continuous case in Part II, respectively. Most of the contents are based on our results. Furthermore, papers on quantum walks are listed ...
متن کاملTeleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کاملA path integral formula with applications to quantum random walks in
We consider general quantum random walks in a d-dimensional half-space. We first obtain a path integral formula for general quantum random walks in a d-dimensional space. Our path integral formula is valid for general quantum random walks on Cayley graphs as well. Then the path integral formula is applied to obtain the scaling limit of the exit distribution, the expectation of exit time and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information & Computation
دوره 15 شماره
صفحات -
تاریخ انتشار 2015